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 Conditional maximum likelihood estimation for control
 charts in the presence of correlation

 Tzong-Ru Tsai, Yi-Chen Chiang and Shuo-Jye Wu
 Tamkang University

 Abstract: In practice, the observations are usually autocorrelated. The

 autocorrelation between successive observations has a large impact on control
 charts with the assumption of independence. It can decrease the in-control

 average run length which leads to a higher false alarm rate than in the case

 of independent process. This paper considers the problem of monitoring the

 mean of AR(1) process with a random error and provides a conditional maxi-

 mum likelihood estimation method to improve the control chart performance

 when the sample size is small. Numerical result shows that the standard es-

 timation method is very unstable when the sample size is small, and there is

 a large probability that the standard estimation method breaks down if the
 level of correlation between successive means is small-to-moderate. The new

 method given here overcomes this difficulty.

 Key words: Autoregressive moving average model, exponentially

 weighted moving average control charts; first-order autoregressive model;
 maximum likelihood estimation; Shewhart control chart.

 1 Introduction

 The assumption usually made when applying control charts to monitor a process
 is that the process observations Y' , • • • are independent, identically distributed
 (i.i.d.) variables with constant mean and variance. The process observations can
 be expressed as

 + ¿ = 1,2,...,

 where ļi is the process mean and random error terms e¿'s are i.i.d. normal random
 variables with mean 0 and variance o' . When the process is in-control, the mean
 /X is often assumed to be the target value and can change to some other values
 when a special cause occurs. However, observations from a process are often
 autocorrelated, and this autocorrelation significantly affects the performance of
 control charts under the assumption of independence. If the process observations
 are autocorrelated, there are two general methods to construct control charts.
 The first method uses the Shewhart control chart but adjusts the control limits to
 account for the autocorrelation (e.g., see Vasilopoulos and Stamboulis (1978) and
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 VanBrackle and Reynolds (1997)). The second method fits a time series model
 to the process data and then uses the residuals from this time series forecast to
 develop control charts. Control charts based on residuals have been considered by
 Abraham and Kartha (1979), Alwan (1991), Alwan and Roberts (1988), Harris
 and Ross (1991), Montgomery (2000) and Lu and Reynolds (1999a, 1999b, 2001).

 Reynolds et ai. (1996)_studied the properties of fixed sampling interval and
 variable sampling interval X control charts for a first-order autoregressive (AR(1))
 process with a random error. This process can be written as

 Yt = ßt + tt (1.1)
 and

 fit = (1 - </>)£ + + o¿t, t = 1,2,..., (1.2)

 where </> is the autoregressive parameter. The a¿'s are i.i.d. normal random vari-
 ables with mean 0 and variance cr^. It is assumed that the mean ļit is not a
 fixed constant but rather continually wander over time. Here, the mean ¡it can be
 described as the AR(1) process. The process will be stationary if '<ļ>' < 1, how-
 ever, most cases of practical interest involve positive autocorrelation. The model
 determined by equations (1.1) and (1.2) is a special case of a first-order autore-
 gressive moving average (ARMA(1,1)) process. If </> = 0, then the AR(1) process
 with a random error still holds and the means at different times are independent.
 The distribution of means fit s depends on the starting point fio. If the starting

 2

 point ¡iq follows a normal distribution with mean £ and variance a * = 1^2 , then
 fit is normally distributed with mean £ and variance cr^. Moreover, it is easy to
 show that Yt is normally distributed with mean £ and variance + oļ , for

 a2
 t = 1,2,

 °Y

 the AR(1) process. It can be shown that the correlation between Yk and Yk-i is
 p = <^0. When ip = 1, the sequence Yi, Y2, . . . is an AR(1) process. This model
 has been used frequently in practical applications, for example, by Harris and
 Ross (1991), Wardell et ai. (1994) and Lu and Reynolds (1999a, 1999b, 2001).

 Box et ai. (1994) showed that the AR(1) process with a random error is equiv-
 alent to an ARMA(1,1) process. The ARMA(1,1) process can be written as

 Yt = (1 - </>)£ 4- <pYt-i + - 07¿_i, £ = 1,2,..., (1-3)

 where the 7¿'s are i.i.d. normal random variables with mean 0 and variance <r^.
 If 0 < 4> < 1 and > 0, Reynolds et ai. (1996) gave equations for expressing the
 ARMA(1,1) parameters in terms of the parameters in the AR(1) process with a
 random error as

 °-°1±WK-ï1¥IWW7i (l4)
 and

 0* = £<re2. (1.5)
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 Conversely, if the parameters in the ARMA(1,1) process have values 0 < 9 < 4> < 1
 and <r^ > 0, then the parameters in the AR(1) process with a random error can
 be expressed in terms of the ARMA(1,1) parameters as

 2 (<f>-0)(l-ct>9) 2
 oc 2 ^ ^7 2 (^•^)

 and

 2 = @ 2 /1 -x 6 2 = 2 i1-7) /1 -x

 When observations are taken from the AR(1) process with a random error, it
 is more convenient to think of these observations as taking from an ARM A (1,1)
 process. Standard time series estimation techniques can be used to estimate the
 parameters, and then equations (1.6) and (1.7) can be used to determine the
 estimates of the corresponding parameters in the AR(1) process with a random

 error as long as the ARM A (1,1) estimates satisfy 0 < 8 < ļ < 1 and <5^ >
 0. This result depends on a precise parameter estimation in the ARMA(1,1)
 process. However, performance of the parameter estimation in the ARMA(1,1)
 process depends on the sample size. Lu and Reynolds (1999a) pointed out that
 the estimation of (f) and 0 in an ARMA(1,1) process is unstable when the sample
 size is not large enough. In their simulation for the ARMA(1,1) process, the
 parameter estimation for 0 and 0 are stable when the sample sizes n = 500 and
 n = 1000. But the parameter estimation become very unstable when only n = 100
 data points are taken. In their numerical examples, they considered the case of
 (j) = 0.6, <Ą = 0.1, and Oy = 1 for an AR(1) process with a random error. The
 series contains 100, 200, 500 and 1000 data points, respectively. They translated
 this process to an ARMA(1,1) process first by equations (1.4) and (1.5) and then
 think of these data points as taking from an ARMA(1,1) process with (j) = 0.6
 and 6 = 0.085. Through the standard time series estimation method, they found
 that there is a large probability to produce negative estimates of (j) and 9 when
 only 100 or 200 data points are taken. Incorrect estimates of parameters result in
 a large impact on developing control charts.

 In this paper, a conditional maximum likelihood (ML) estimation method is
 provided in Section 2 to overcome this difficulty for the case of small sample size.
 Some numerical results are provided in Section 3 to evaluate the performance of
 the method. Conclusions are made in Section 4.

 2 Conditional maximum likelihood estimation me-
 thod

 If observations are taken from an AR(1) process with a random error, it is more
 convenient to consider that they are taken from an ARMA(1,1) process. Assume
 that 0 < 0 < (j) < 1 and cr^ > 0 for the ARMA(1,1) process, and equations (1.6)
 and (1.7) are used to determine the estimates of the corresponding parameters in
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 the AR(1) process with a random error. The standard estimation method breaks
 down easily if the sample size is small. One situation of that is the parameters </>
 and 0 in the ARM A (1,1) process are estimated as negative values.

 Suppose that observations are taken from an AR(1) process with a random
 error. Assume that parameters </> = 0.3(0.1)0.8, of = 0.25, g' = 1, and ip =
 0.75. This process implies that 75% of the process variability is due to the AR(1)
 process and the correlation between adjacent observations is p = 0.750. Using
 equations (1.4) and (1.5), we can think of these observations as coming directly
 from an ARM A (1,1) process and without reference to the original process. For
 each combination of the specified values of </>, 6 and cr^, n (n = 100 and 300)
 observations are generated from the corresponding ARMA(1,1) process until 10000
 runs are obtained; moreover, the ARM A (1,1) parameters are estimated based on
 the standard ML estimation. Some criteria for evaluating the performance of
 estimators are considered. They are: (1) biases of estimators 4> and 0 of parameters
 (j) and 0, respectively; (2) mean squared error (MSE) of estimators 0 and 0 of
 parameters 0 and 0, respectively; (3) proportion of negative estimates of </> and
 6 when 0 < 6 < (j) < 1, say Pr- 1; (4) proportion ofO<0<0<l when
 0 < 0 < (j) < 1, say Pr- 2. Table 1 and Table 2 present the simulated results. It
 can be seen that the biases, MSEs and Pr- 2 are not very large. However, the
 values of Pr- 1 are large for small-to-moderate values of 0. Even though the initial
 sample size reaches 300, the probability Pr- 1 is still large and, hence equations
 (1.6) and (1.7) break down for these cases when 0 is small-to-moderate. Therefore,
 a conditional ML estimation method is provided here to overcome this difficulty
 when the sample size is not large enough.

 Let fit = Ht - £ for t = 0, 1, 2, . . . , ra, where ra is the initial sample size. In
 this article, we choose /¿o = £ to be the starting point. Hence, fio = /io - £ = 0
 and equation (1.2) can be rewritten as

 fit = (pfit-i + olu ¿ = 1,2,..., ra. (2.8)

 From the derivation in Appendix A, we have

 t

 A = t=l,2,...,m. (2.9)
 J* = 1

 Let fiT = (fit , fi>2i • • • ? finì)' Then E(fi) = 0 and the variance-covariance ma-
 trix Cov(fi) = cr^V, where V is an ra x ra symmetric matrix with entry Vij =
 £^=1 for i < j. Moreover, we can show that ß follows a normal distribu-
 tion with mean 0 and variance-covariance matrix V. Let iiT = (/¿i , /12, . . . , /¿m) =
 £T -f £1t and eT = (ci, €2, . . . , em), where 1 is an ra x 1 vector with entries
 1. Then, fi follows a normal distribution with mean £1 and variance-covariance
 matrix cr%V, and Y = /z + e follows a normal distribution with mean £1 and
 variance-covariance matrix V + of J, where I is an identity matrix of order ra.

 a2
 Let S = -fi and P(5) = V 4- 51. Then Y follows a normal distribution with mean

 and variance-covariance matrix a^cP(S). Suppose that parameters 0, -0 and 5
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 Table 1 Bias, MSE, Pr-1 and Pr-2 when n = 100

 < i > d bias{<¡>, <f>) bias(9, 9) MSE(<j>) MSE{9) Pr-1 Pr-2
 0.3 0.07902 -0.11864 -0.11589 0.15814 0.16059 0.5251 0.0101

 (0.19144) (0.20508) (0.07040) (0.08277)
 0.4 0.11001 -0.09901 -0.09281 0.11046 0.11414 0.4465 0.0017

 (0.11806) (0.13977) (0.03109) (0.05169)
 0.5 0.14590 -0.07520 -0.07212 0.07504 0.08272 0.3647 0.0003

 (0.07436) (0.09492) (0.02529) (0.03537)
 0.6 0.18950 -0.04745 -0.04717 0.04705 0.05729 0.2416 0

 (0.03787) (0.05327) (0.01786) (0.02582)
 0.7 0.24579 0.00782 -0.00749 0.02692 0.03716 0.1001 0

 (0.04178) (0.03404) (0.01653) (0.02322)
 0.8 0.32523 0.10729 0.02643 0.01946 0.01840 0.1070 0

 Note: The values in parentheses are computed only for the cases of 0 < Ö < </> < 1.

 are known. The log- likelihood function is maximized for a by

 ¿l = ±í(Y-tl)Tp-1(5)(Y-í11). (2.10)
 In practical applications, the values of </>, f and S are usually unknown. We
 can get these estimates from the corresponding ARMA(1,1) model based on the
 standard ML procedure (e.g., see Box et ai. (1994)) first and then plug these es-
 timates into equation (2.10) to obtain a conditional estimate a'. Assume that
 observations are taken from an AR(1) process with a random error with param-
 eters (f) > 0, cr% > 0 and o' > 0. The corresponding ARMA(1,1) process and
 equations (1.6) and (1.7) can be used to determine the estimates of the parame-
 ters in the original process. When 0 < 0, 0<OorO<0<0<l,a conditional
 ML estimation procedure is considered. The steps are as follows:

 Step 0: Compute the estimates 0 and a* of the parameters <ļ> and a * in an

 AR(1) model, respectively. Let cr^* = <5^. Set the initial values </>(0) = </>

 and = 0. From equation (1.7), we have cr^0^ = 0. Using equation (1.6),

 we can obtain that <Ta(0) = cry(0) = 1°f(0)2 , and = oy(0). Hence,
 ^(O) = fgj=landi(û) = 2gj=0.

 <Jy C Ct
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 Table 2 Bias, MSE, Pr-1 and Pr-2 when n = 300

 <j> e bias(<f>, <j>) bias(6, 6) MSE(<1>) MSE(6) Pr-1 Pr-2
 0.3 0.07902 -0.04258 -0.04124 0.06167 0.06457 0.4327 0

 (0.12217) (0.13186) (0.03436) (0.04026)
 0.4 0.11001 -0.03432 -0.03237 0.03667 0.04020 0.3332 0

 (0.06552) (0.07654) (0.01720) (0.02154)
 0.5 0.14589 -0.02357 -0.02257 0.02057 0.02534 0.2068 0

 (0.02665) (0.03522) (0.01065) (0.01434)
 0.6 0.18949 -0.00906 -0.00783 0.01165 0.01640 0.0805 0

 (0.00915) (0.01455) (0.00781) (0.01136)
 0.7 0.24579 0.00865 0.00562 0.00673 0.01118 0.0131 0

 (0.01181) (0.00963) (0.00601) (0.01012)
 0.8 0.32522 0.06048 0.03717 0.00738 0.00941 0.0003 0

 Note: The values in parentheses are computed only for the cases of 0 < 0 < 0 < 1.

 Step 1: Substitute S^°' and £ into equation (2.10) to get a a' 1 ' . Then, update

 the following estimates: af}1^ = ļ^0'a , <7«^ = <Xy°' - = ^¡y,

 <¿(1) = ¿(1) = 4S.

 ^ + (i+^)>?w i |/^ + (i+^)>^'2
 2^(i)a£2(1) 2^ ¿(D^O) j 4'

 and Gy ^ = ay°'

 Step 2: For integer i > 2, compute by equation (2.10) with ^
 and £, and update the following estimates: = ^_ļļcr^*, =

 2(0 2(1) , 2(0 ,(£) <rlin ±(£) 6W x(i) <r?(/)
 1-^-1)2. aY 2(0 = <V 2(1) + , ^ 2(0 % 1p{t) ,(£) = ^(7T, <l>(t) ±(£) = £¿^r, 6W x(i) =
 and

 »?«+( i l/^+ťi+w^v .
 2<s«v?m 2'ļ 1, ¿«>„w> J •

 Repeat Step 2 until the minimum ctq^ is obtained, where & is a positive
 integer.

 Step 3: The estimate 6 ^ is taken as the new initial estimate of 0. Moreover, 9^k'
 (ļ)(°' equation (1.6) and equation (1.7) are used to get new initial estimates
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 Conditional maximum likelihood estimation for control charts 157

 of the parameters and of , respectively. Repeat Step 1 and Step 2 again
 through these new initial estimates until the minimum is obtained,
 where h is a positive integer.

 The estimates <¡¿h' an(^ can be used to develop control charts and
 help us to understand the autocorrelated process.

 After the parameters (f), Oy and are estimated, two control charts for mon-
 itoring the mean of AR(1) process with a random error are suggested. The first
 chart is the exponentially weighted moving average (EWMA) control chart based
 on the observations (see Lu and Reynolds (1999a)). This chart plots the control
 statistics

 Xt = (1 - X)Xt~i + AY¿, t = 1,2,..., (2-11)

 where À is a smoothing constant satisfying 0 < A < 1 and Xo is the starting value.
 If the target value of process is £o> we can set Xo = £o- The control limits for the
 EWMA control chart are

 £o±c]fž~~jaY- (2-12)
 Lu and Reynolds (1999a) provided some tables for selecting adequate values

 of c and A. In their tables, it seems that a relatively small value of A, such as
 A = 0.2, would work well across a range of shifts for both the EWMA chart of
 observations and the EWMA chart of residuals. For example, if ip = 0.5, <ļ> = 0.4
 and we hope to detect a shift in mean (£ - £0 )/gy = 1-5, we can select A = 0.2
 and c = 3.391.

 The second control chart is the Shewhart control chart in the presence of
 autocorrelation. The control limits are

 to ± haY. (2.13)

 The Table 7 of Reynolds et ai. (1996) displays some adequate values of h. For
 example, if ip = 0.5, (j) = 0.4, we can select h = 2.998.

 3 Numerical results

 We simulated 120 observations from an AR(1) process with a random error with
 parameters (j) = 0.3, of = 0.25, = 0.75, o' - 1 and ip = 0.75. The 120
 observations have the target value of £0 = 1-25, but a constant 1.25 is added to
 the last 20 observations to create a shift in the mean of size a = 1.25. Figure a Y

 1 shows the time plot of the data. Using SAS to estimate the corresponding
 ARMA(1,1) parameters for the first 100 observations, we get = -0.95344 and
 9 = -0.91529 and, hence the standard method based on equations (1.6) and (1.7)
 breaks down. Fitting these observations to an AR(1) model, we can get estimates
 4> - 0.01679, ây = 0.84924 and ifi = 1. These estimates seriously overestimate the
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 Table 3 Estimation results of the example in Case 1 based on dif-
 ferent methods

 parameters

 true value 0.30 0.07902 0.25 0.75 1 0.75

 ARMA(1,1) -0.95344 -0.91529 NA* NA NA NA
 AR(1) 0.01679 0 0 0.84948 0.84948 1

 new method 0.37206 0.13315 0.30951 0.56002 0.86953 0.64404
 Note: 'NA' denotes not available

 value of i¡j due to 6 = 0. The AR(1) model always gives -0 = 1 whatever the data
 set is. Table 3 shows the estimation result based on the conditional ML estimation

 method. The estimates are much close to the true values of parameters. Hence,
 the control charts based on equations (2.12) and (2.13) can be constructed more
 adequately.

 Consider the Shewhart chart with the control limits as in equation (2.13)
 first. From Table 3, we have à' = 0.86953 based on the new method. Using an
 interpolation to the Table 7 in Reynolds et ai. (1996), we have h = 2.996. Hence,
 we can get the control limits 1.25 ± 2.996'/0.86953 = -1.54373 and 4.04372,
 respectively. Figure 1 shows this chart and indicates an out of control signal at
 observation 113. Next, we consider the EWMA chart. The EWMA estimates
 based on equation (2.11) are plotted in Figure 2. Using À = 0.2, 0 = 0.37206
 and -0 = 0.64404, the Figure 1 in Lu and Reynolds (1999a) shows that c = 3.5.
 Substitute these estimates into equation (2.12), we can get the control limits are
 0.16210 and 2.33790, respectively. The EWMA chart shows an out of control
 signal at observation 106 which exceeds the upper control limit and indicates a
 potential upward trend for the following estimates of the EWMA control statistics.
 The EWMA chart is faster to detect an out of control signal than the Shewhart
 chart does.

 Table 4 displays the average values of the estimates of parameters based on
 the new method. The value of n' denotes the total number of the simulated data
 sets with estimates 0<O, 0<OorO<0<0<l based on an ARMA(1,1) model.
 Within these n' data sets, the value of ri2 denotes the total number negative
 estimates for the autoregressive parameter based on an AR(1) model. In these
 ri2 data sets, the new method still breaks down. Hence, the average values of the
 estimates in Table 4 are computed based on only the n' - n<i simulated data sets.
 From Table 4 we can see that the mean estimate of is overestimated due to

 both the values of 6 and are underestimated. But, the mean estimate of -0 is
 larger than 0.5 that keeps the same direction of the true value of tļj. The other
 estimates 0 and a' are reasonably close to the true value and, hence can be used
 to construct the control charts adequately.
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 Figure 1 Shewhart chart of the observations with nominal in control
 ARL=370.Ļ

 Figure 2 EWMA of the observations.
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 Table 4 Estimation results of the examples in Case 1 based on new
 method

 parameters

 true value 0.30 0.94907 0.25 0.75 1 0.75 5352 141

 estimates 0.24164 0.94414 0.04524 0.95215 0.99739 0.95463

 true value 0.40 0.90899 0.25 0.75 1 0.75 4482 16

 estimates 0.30323 0.90278 0.04132 0.94954 0.99087 0.95829

 true value 0.50 0.85676 0.25 0.75 1 0.75 3650 5

 estimates 0.37308 0.84753 0.03603 0.94799 0.98402 0.96337

 true value 0.60 0.79157 0.25 0.75 1 0.75 2416 0

 estimates 0.44227 0.78598 0.03027 0.95357 0.98385 0.96922

 4 Conclusions

 If observations are taken from an AR(1) process with a random error, it is more
 convenient to think of these observations are taken from an ARM A (1,1) process.
 This paper provides a conditional ML estimation procedure to overcome the diffi-
 culty of that the standard ML estimation fails for the ARM A (1,1) process. If the
 sample size is small or we wish to chart the process early, then the proposed esti-
 mation method can be conducted even when the the standard ML estimation fails.

 But the proposed estimation method still fails if the AR(1) model can not provide
 a positive estimate for the parameter <ļ> as an adequate initial value. Fortunately,
 this situation appears rarely in practice. The new estimation method can be used
 in the early stage and aid us to chart the process until enough observations are
 obtained, and then the standard ML estimation is used to construct the control
 charts.

 Appendix: Expression of the components of ft

 By equation (2.8), we can show that

 ßl = <t>fio +ÛJ1,

 ß>2 - <t>ßl a2 = <t? fi 0 + (¡>Oi' -f- 0¿2 ,

 ßm = 4>ßrn-i + atm - (1>mß 0 + <ļ>m~lotļ + <t>m~2oi2 H
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 Hence, E(fit) = 0, for alH = 1, 2, . . . , ra. Moreover, for i < j ,

 Cov(fii,fij) = Cov ļ Y^<f>'~ho¡h,
 'h=l s= 1 /

 - tt (j)1 h(ý sCov(ah,as)
 h=l s=l

 = Í2<t>i+j~2h°l-
 h=i

 Thus, Vij = Y?h= i 4>i+i~2h-

 (Received March, 200Ą- Accepted August, 200Ą.)

 References

 Abraham, B. and Kartha, C. P. (1979). Forecast stability and control charts.
 ASQC Technical Conference Transactions , American Society for Quality
 Control, Milwaukee, 675-680.

 Alwan, L. C. (1991). Autocorrelation: fixed versus variable control limits. Quality
 Engineering , 4, 167-188.

 Alwan, L. C. and Roberts, H. V. (1988). Time-series modeling for statistical pro-
 cess control. Journal of Business and Economic Statistics , 6, 87-95.

 Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994). Time Semes Analysis,
 Forecasting and Control 3rd edition. Prentice-Hall, Englewood Cliffs.

 Harris, T. J. and Ross, W. H. (1991). Statistical process control procedures for
 correlated observations. The Canadian Journal of Chemical Engineering , 69,
 48-57.

 Lu, C.-W. and Reynolds, M. R., JR. (1999a). EWMA control charts for monitoring
 the mean of autocorrelated process. Journal of Quality Technology , 31, 166-
 188.

 Lu, C.-W. and Reynolds, M. R., JR. (1999b). Control charts for monitoring the
 mean and variance of autocorrelated process. Journal of Quality Technologyi
 31, 259-274.

 Lu, C.-W. and Reynolds, M. R., JR. (2001). CUSUM charts for monitoring an
 autocorrelated process. Journal of Quality Technology , 33, 316-334.

This content downloaded from 163.13.36.180 on Wed, 08 Dec 2021 06:00:15 UTC
All use subject to https://about.jstor.org/terms



 162 Tzong-Ru Tsai, Yi-Chen Chiang and Shuo-Jye Wu

 Montgomery, D. C. (2000). Introduction to Statistical Quality Control 4th edition.
 New York: John Wiley and Sons.

 Reynolds, M 1 R., JR., Arnold, J. C. and Baik, J. W. (1996). Variable sampling in-
 terval X charts in the presence of correlation. Journal of Quality Technology ,
 28, 12-30.

 Vanbrackle, L. N. and Reynolds, M. R., JR. (1997). EWMA and CUSUM control
 charts in the presence of correlation. Communications in Statistics - Simu-
 lation and Computation , 26, 979-1008.

 Vasilopoulos, A. V. and Stamboulis, A. P. (1978). Modification of control limits in
 the presence of data correlation. Journal of Quality Technology , 10, 20-30.

 Wardell, D. G., Moskowitz, H. and Plante, R. D. (1994). Run length distributions
 of special-cause control charts for correlated processes. Technometńcs1 36,
 3-17.

 Tzong-Ru Tsai, Yi-Chen Chiang and Shuo-Jye Wu
 Department of Statistics
 Tamkang University
 Tamsui, Taipei, Taiwan 251, ROC.
 E-mail: shuo@stat.tku.edu.tw

This content downloaded from 163.13.36.180 on Wed, 08 Dec 2021 06:00:15 UTC
All use subject to https://about.jstor.org/terms


	Contents
	p. 151
	p. 152
	p. 153
	p. 154
	p. 155
	p. 156
	p. 157
	p. 158
	p. 159
	p. 160
	p. 161
	p. 162

	Issue Table of Contents
	Brazilian Journal of Probability and Statistics, Vol. 18, No. 2 (december 2004) pp. 103-200
	Front Matter
	Regression diagnostics in an autocorrelated model [pp. 103-112]
	Testing of unit and fractional roots in the context of deterministic trends with weakly autocorrelated disturbances [pp. 113-127]
	Analysis of variance for binary data in unbalanced designs [pp. 129-149]
	Conditional maximum likelihood estimation for control charts in the presence of correlation [pp. 151-162]
	Some data analyses using mutual information [pp. 163-182]
	Robust M-procedures in univariate nonlinear regression models [pp. 183-200]
	Back Matter



